

COMPLICANZE DELL'ENDOSCOPIA DEL TRATTO DIGESTIVO

PERFORAZIONI È STENOSI

Federico Icopini
Ospedale dei Castelli
ASL Roma 6, Ariccia
federico.iacopini@gmail.com

A comprehensive approach to the management of acute endoscopic perforations (with videos) (CME) []

Todd H. Baron, MD, FASGE, Louis M. Wong Kee Song, MD, Martin D. Zielinski, MD, FACS, Fabian Emura, MD, PhD, FASGE, Mehran Fotoohi, MD, Richard A. Kozarek, MD, FASGE

Rochester, Minnesota, USA

The only method to prevent iatrogenic luminal perforation at the time of endoscopy is the avoidance of endoscopic procedures. Luminal perforation is among the most feared adverse events of GI endoscopy, and the rationale for this is multifactorial: (1) it may carry significant mor-

surgery (NOTES), luminal perforation is a component of the procedure that can be readily managed endoscopically.² On the other hand, surgical exploration and repair are generally required in patients in whom endoscopic measures are unsuccessful or technically not feasible in

1022

"We don't plan to fail; we just fail to plan."

-Unknown

Algorithm for the Management of Endoscopic Perforations: A Quality Improvement Project

Lukasz Kowalczyk, MD¹, Chris E. Forsmark, MD¹, Kfir Ben-David, MD², Mihir S. Wagh, MD¹, Shailendra Chauhan, MD¹, Dennis Collins, MD¹ and Peter V. Draganov, MD¹

Perforations are an uncommon but serious complication of endoscopy. Although they are well recognized, no universally accepted strategy for their management exists. The need for management algorithms in situations that call for multiple interventions in a short time, with coordinated effort encompassing multiple providers from different specialties, has long been recognized, but no such clinical care pathway has been developed for the management of endoscopic perforations. Since perforations are uncommon, a predetermined plan of action can streamline

General policy

ESGE recommends that each center implements a written policy regarding the management of iatrogenic perforations, including the definition of procedures that carry a high risk of this complication. This policy should be shared with the radiologists and surgeons at each center.

awareness of the risk factors,

prompt availability

adequate radiological imaging, clinical, endoscopic & surgical competence

relatively rare, not a completely unpredictable

detect subtle perforations may result in diagnostic delay. Thus the management team for iatrogenic perforations seems to resemble that of stroke and gastrointestinal bleeding units, where prompt collaboration and availability of required competences has led to better clinical outcomes [5, 6]. The availability of dedicated protocols may also represent a structural quality indicator for the health system.

Endoscopic latrogenic Perforation multidisciplinary approach

Reporting

In the case of an endoscopically identified perforation, ESGE recommends that the endoscopist reports: its size and location with a picture; endoscopic treatment that might have been possible; whether carbon dioxide or air was used for insufflation; and the standard report information.

- 1. the "EVENT"
- 2. the CLOSURE ATTEMPT & outcome
 - = better outcomes = guide to further interventions
 if no / incomplete (medico-legal issues fears) = delay & worse outcome

3. COMMUNICATION, EARLY

between providers: DIRECT (no via physicians in training) with the familiy and relatives: SINGLE DESIGNED PERSON

Endo Perforation definition

presence of gas or luminal contents outside the GI tract

CLASSIFICATION

endo timing

intra early (<12-24h) Endo VISIBLE (most cases)

endo closure

post delayed (>24h) CLINICO-RADIOLOGIC

surgery

size, cause ... definition not clinically relevant

Perforation be prepared, always

- 1. Check Bowel prep or reschedule
- 2. Remove fluids
 - Suck & drying the operating field segment & upstream and downstream segments,
 - move to non-dependent position (prevent fluid escape) (conscious sedation helps!)
- 3. Use CO2
- 4. Achieve scope stability / good manouvrability
- 5. Review pt features (demographics, comorbidities, prior surgical procedures)

Iqbal CW, Arch Surg 2008 Byeon JS. Clin Endosc 2013 Raju GS, Saito Y, Matsuda T et al. GIE 2011

Perforation Endo closure

- 1. DO NOT PANIC! for faculty & trainees alike
- 2. TALK to NURSE
- 3. call "expert" operator

CLOSE wo delay EFFICIENTLY as far as possible

- Administer anti-peristaltic drugs
- expose the base to allow for proper clip placement
- inspect, ensure it is tight

Perforation: Close & Decompress Tension Pneumoperitoneum = urgency

http://www.wikiradiography.com

Clinical signs

- dyspnea / shoulder pain
- tympanic rigid abdomen
- hypovolemic shock (compressed vena cava)
- jugular vein congestion

<20% can be managed non-surgically

- 16G-20G venous catheter (plastic sheath)
- 2 cm below the umbilicus in the midline (through the linea alba)
- 5 cm superior and medial to the anterior superior iliac spines

Lin BW. J Emerg Med 2010; Saito Y. Digestive Endoscopy 2007

Perforation after endo closure conservative management & follow-up

- hospitalization nearly always
- antibiotics IV (1° line: ciprofloxacin and metronidazole)
- nothing by mouth,
- parenteral nutrition in undernourished pts or in wellnourished pts with expected non-alimentation for ≥7 days
- DIVERT luminal contents from esoph, stomach, duodenum
 - NOT IF CLOSURE HAS BEEN OBTAINED risk of dislodging clips (TTS)
 - NOT BLINDLY, under control
- CLOSE MULTIDISCIPLINARY MONITORING

Postop. Perforation clinical presentation

intraop. / early (within 12h... 24h)

- unusual abdominal
- abd. pain + distension,

high index of suspicion

- chest pain,
- subcutaneous air/crepitus (emphysema)
- shortness of breath,
- hemodynamic instability (hypotension/tachycardia)

delayed (>24h)

- systemic inflammatory response,
- acute abd pain (peritoneal irritation); back / flank pain
- hypotension,
- mental confusion

Postop. Perforation Diagnosis: suspicion + CT scan

WITH oral or rectal water-soluble contrast

NO IV contrast

Kowalczyk L. AJG 2011 Zissin R. Eur J Radiol 2008 Kim DH. Curr Probl Diagn Radiol 2008

TIMING intraop.: after endoscopy

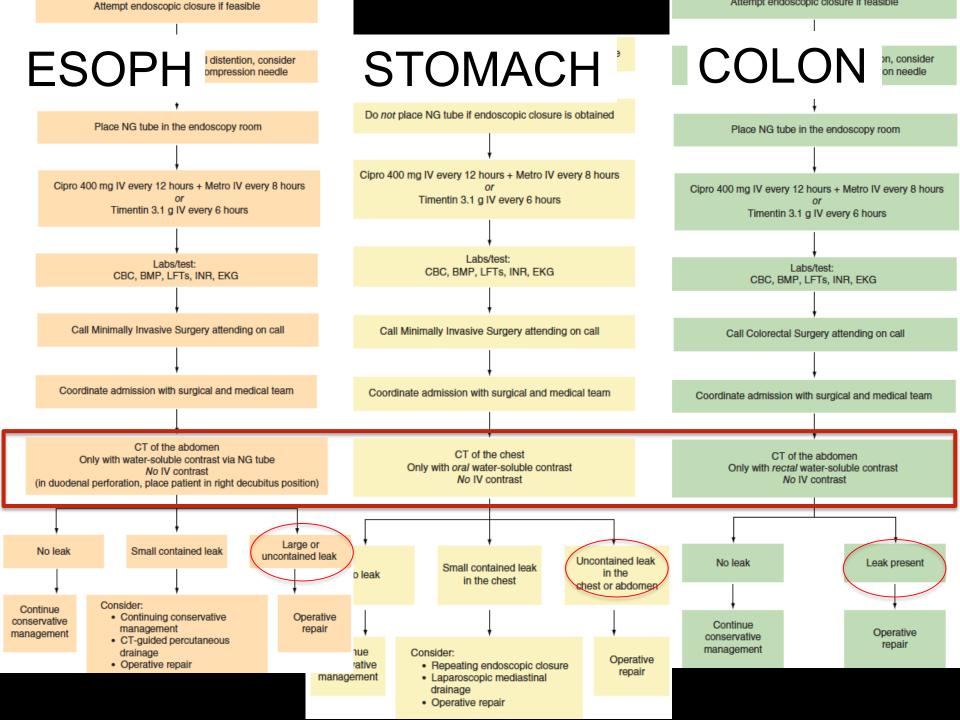
postop./delayed: suggestive symptoms/signs

Volume non proportional to perforation (related to closure)

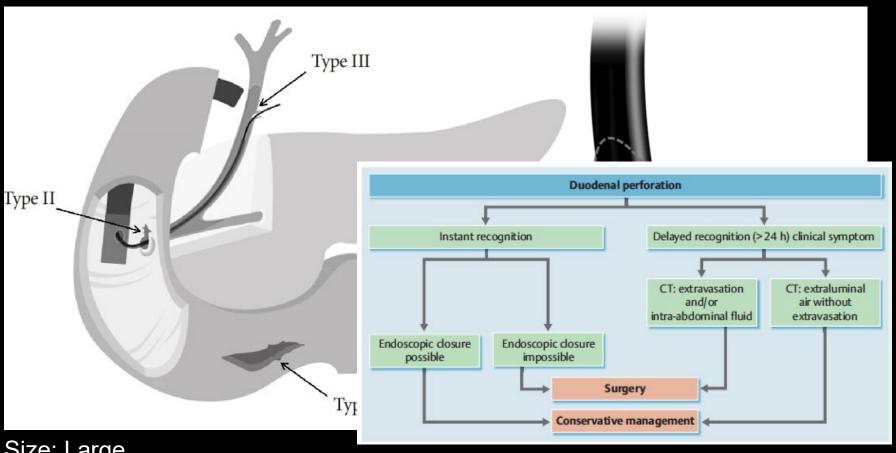
Site can dissect into distant spaces

Evolution pneumoperitoneum: 1 wk but up to several wks

Perforation after endo timing of surgery = general pt condition


the general clinical condition of the patient. In the case of no or failed endoscopic closure of the iatrogenic perforation, and in patients whose clinical condition is deteriorating, hospitalization and surgical consultation are recommended.

Early surgery preferred if


- active leak (increasing volume) after closure
- free fluid
- contrast (water soluble) extravasation

concomitant pathology

- large neoplasm likely to be a carcinoma,
- unremitting colitis,
- perforation complicating an obstructing colonic lesion
- EoE (surgical repair is require in 40% of cases Runge TM, JCG 2017)

duodenal perforation lateral wall: Stapfer type I - by the scope itself

Size: Large Mortality: high

Main risk: Billroth II gastrectomy

Avgerinos DV. Surg Endosc 2009

delayed perf. g-ESD

Author, year	Patients	Lesions	Delayed perforation cases (%)	Emergency surgery cases (%)
Onozato (2016) ⁹⁸	160	171	1 (0.6)	O (O)
Uedo (2007) ⁶⁵	143	143	1 (0.7)	ND
Kato (2011) ¹¹³	468	468	2 (0.43)	2 (100)
Hanaoka (2010) ¹¹⁴	1159	1329	6 (0.45)	5 (83.3)
Yoo (2012) ¹⁰⁸	729	823	1 (0.12)	1 (100)
Ohta (2012)102	1500	1795	1 (0.06)	1 (100)
Kosaka (2014) ¹²²	438	438	1 (0.2)	1 (100)
Chinda (2015) ¹²³	307	318	1 (0.3)	ND
Miyagi (2015) ¹²⁴	22	2730	1 (0.04)	ND
Suzuki (2015) ¹¹⁵	4943	4943	7 (0.1)	3 (42.9)
Sumiyoshi (2017) ¹²⁵	177	209	1 (0.6)	1 (100)
Yamamoto (2017) ¹²⁶	1158	1199	5 (0.42)	0 (0)

1329 g-ESDs delayed perf

6 (0.45%)

upper third/ lesser curvature 5
emergency surgery 5 (83%)

probably due to:

- 1) Ischemic damage
- 2) increased thermic coagulation

PREVENTION?

NGT for decompression (24 hrs)

Hanaoka N, et al. Endoscopy 2010

Endoscopic Closure Techniques size does matter

TTS clip

from 3 to 25 defects

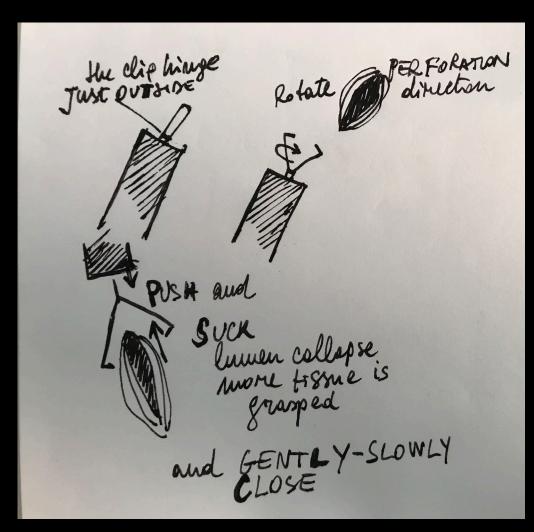
limits: limited wingspan

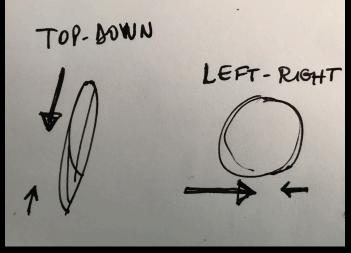

fibrotic tissue

Qadeer MA. GIE 2007

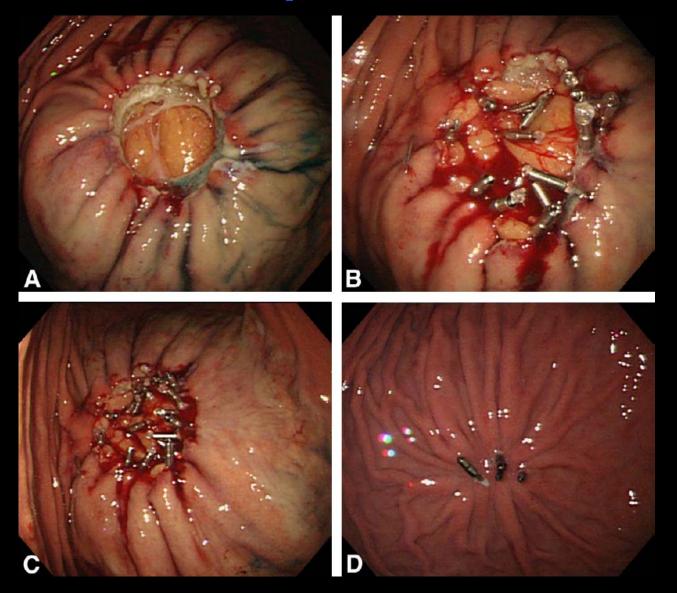
Daram SR. Surg Endosc 2013

OTS clip <20 mm Esoph. 5-20 mm Stomach up to 30 mm Colon Voermans RP. CGH 2012

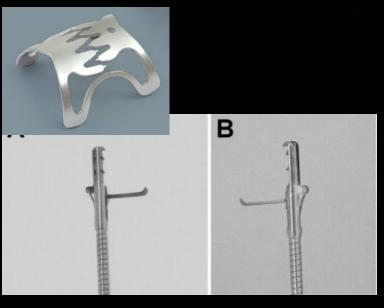

g-Perforations TTS clip


First author, year	Туре	n	Pathologies	Technique	Success rate	Others
Binmoeller, 1993 [98]	Case report	1	Leiomyoma	TTS clipping	100%	-
Albuquerque, 2004 [99]	Case report	1	Adenoma	TTS dipping	100%	-
Katsinelos, 2004 [100]	Case report	1	Adenoma (HGD)	TTS clipping	100%	-
De Caro, 2009 [101]	Case report	1	Adenocarcinoma in situ	TTS clipping	100%	-
Kim, 2000 [102]	Case report	1	Adenocarcinoma in situ	TTS clipping	100%	-
Tsunada, 2003 [76]	Retrospective, case series	7	Early gastric cancer	TTS clipping (6) Omental patch (1)	100%	1 large defect
Fujishiro, 2006 [18]	Retrospective, case series	11	Early gastric cancer	TTS clipping	100%	Meandischarge time 12.1 days
Minami, 2006 [63]	Retrospective	121	Early gastric cancer	<pre>-<1 cm: TTS clipping ->1 cm: omental patch</pre>	98.3 %	2 surgeries
Total	-	144		-	>99%	For defects < 10 mm

& OTS clip


First author, year	Туре	n	Perforation cause	OTSCs, n	Success rate	Size
Baron, 2012 [71]	Retrospective	2	latrogenic	2	100%	-
Kirschniak, 2011 [70]	Retrospective	7	latrogenic (1 ESD)	7	100%	-
Voermans, 2012 [2]	Prospective	6	latrogenic: ESD, EMR, EUS	6	100%	<30mm
Nishiyama, 2013 [72]	Retrospective	7	latrogenic: ESD, scope/ulcer	13	86% (6 /7)	Mean diameter 30 mm 1 failure, 50 mm
Total		22	latrogenic	28	95%	For 10-mm to 30-mm defects

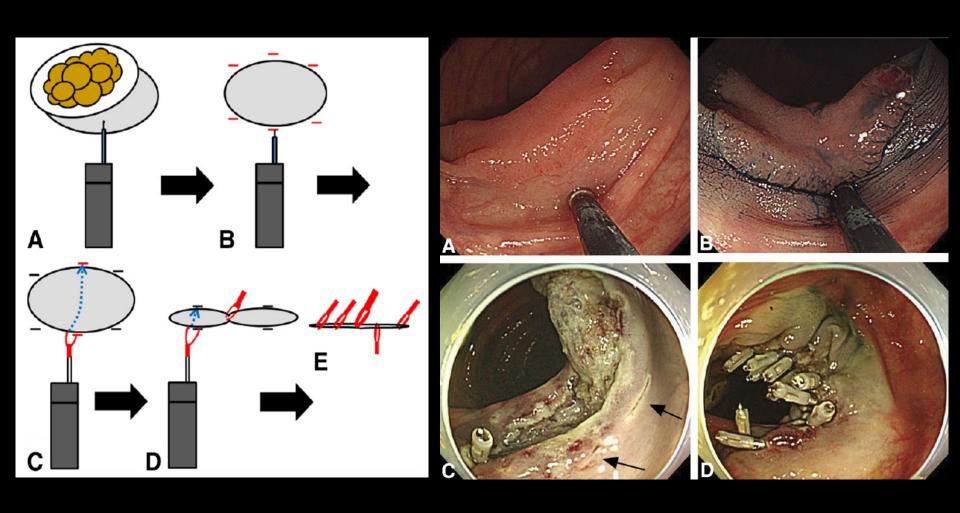
TTS clip standard technique



TTS clip Omental-patch closure

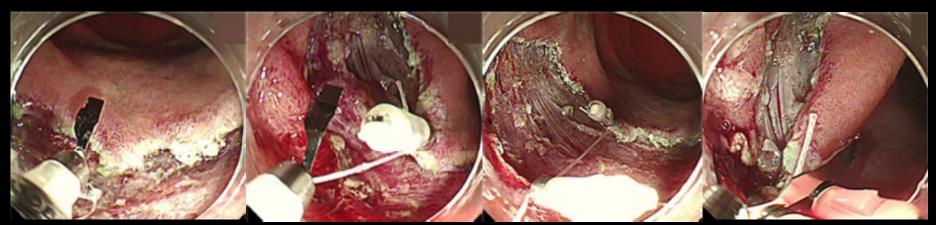
OTS clip

Location	n.	Successful closure (%)
Esophagus	5	5 (100)
Stomach	6	6 (100)
Duodenum	12	9 (75)
Colon	13	12 (92)

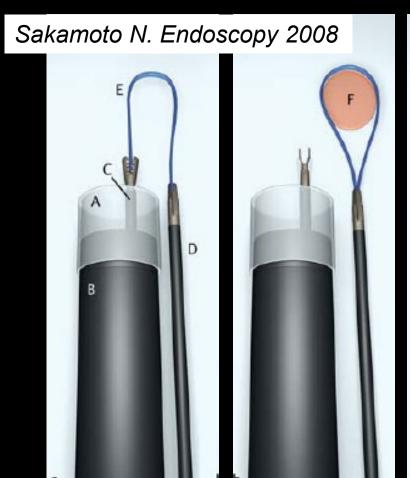


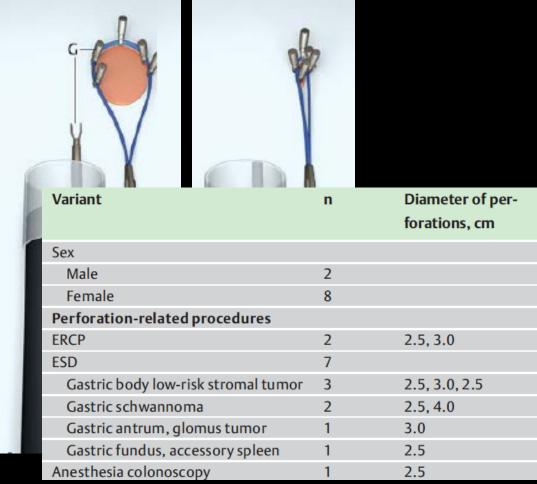
perforations large >20 mm

possibilities

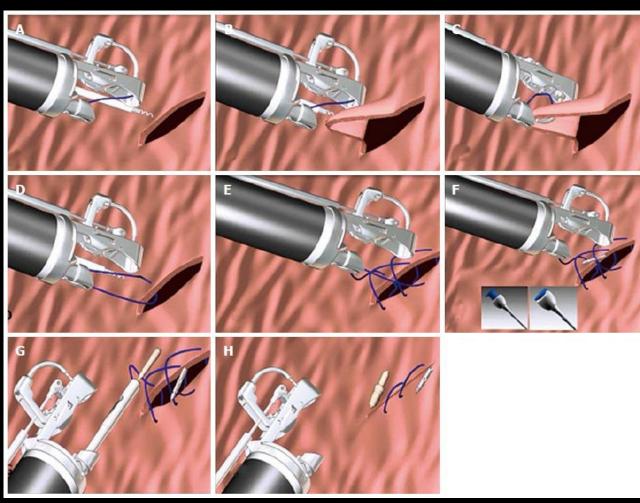

- clips + assistance
- stents
- suturing devices

Artificial ulcer closure m incisions for a better & stable clip grip




clip&string closure

loop&clips closure with a 1-channel endoscope


Stent e-perforations

First author, year	Study design	Type of treatment	Patients, n	Technical success, %	Clinical success, %	Complica- tions, %	Mortality, %
Eroglu, 2009 [78]	Retrospective	SEMS	4	100	n.a.	0	0
Freeman, 2009 [79]	Prospective	SEPS	19	100	89	24	0
Salminen, 2009 [80]	Retrospective	SEMS	8	100	75	25	37.5
Amrani, 2009 [81]	Prospective	SEMS	2	100	100	0	0
Leers, 2009 [82]	Prospective	SEMS	9	100	n.a.	n.a.	<6
Kiernan, 2010 [83]	Retrospective	SEMS	8	100	75	n.a.	12
Vallböhmer, 2010 [59]	Retrospective	SEMS	12)	100	n.a.	8	0
Van Heel, 2010 [55]	Prospective	SEMS/SEPS	31)	100	97	33	21
Schimdt, 2010 [84]	Retrospective	SEMS+ endoclip	21+1	100	n.a.	n.a.	<13.3
Swinnen, 2011 [85]	Retrospective	SEMS	23	100	n.a.	n.a.	n.a.
Làzàr, 2011 [86]	Retrospective	Endoclip	1	100	100	0	0
Dai, 2011 [87]	Prospective	SEPS	5	n.a.	83	n.a.	n.a.
D'Cunha, 2011 [88]	Retrospective	SEMS/SEPS	15	95	60	13	6.7
Baron, 2012 [71]	Retrospective	Novel OTSC	1	100	100	0	0
Lin, 2014 [89]	Retrospective	Mesh-covered stents	9	100	n.a.	4	55.6
Biancari, 2013 [90]	Retrospective	Unspecified stents + endoclips	11+1)	100	n.a.	25	46
Wilson, 2013 [91]	Retrospective	SEMS	7	100	n.a.	n.a.	n.a.
Wahed, 2013 [92]	Retrospective	Unspecified stent	2	100	0	n.a.	100
Voermans, 2012 [2]	Prospective, multicenter	OTSC	5	100	100	0	0
Schweigert, 2013 [93]	Retrospective	SEMS/SEPS	13)	100	15)	85	<mark>(15</mark>)
Sato, 2013 [94]	Retrospective	Endoclip	1	100	100	0	0
Heits, 2014 [95]	Prospective	Vacuum therapy	10	100	90	20	10
Hadj, 2012 [96]	Retrospective	OTSC + SEMS	1	100	100	0	0
Biancari, 2014 [97]	Retrospective	SEMS/endoclips	<mark>67</mark>	100	15	34	19.4

suture Overstitch, Apollo

endoscopic approach to perforation

be Prepared to Close or Refer to Avoid

- risk factor: procedure related
- experience: operator / center related

e-perf: EMR vs. ESD

	ES	D	EM	R		Odds ratio	Odds ratio
Study or subgroup	Events	Total	Events	Total	Weight	M-H, fixed, 95%CI	M-H, fixed, 95%CI
Ishihara 2008	1	31	0	140	1.7%	13.82 [0.55, 347.43]	
Jung 2008	1	37	0	32	4.9%	2.67 [0.11, 67.89]	-
Konishi 2012	3	56	0	105	3.1%	13.80 [0.70, 272.14]	
Kubota 2010	2	36	1	131	3.9%	7.65 [0.67, 86.86]	
Takahashi 2010	3	116	3	184	21.6%	1.60 [0.32, 8.07]	
Teoh 2010	1	22	0	13	5.5%	1.88 [0.07, 49.67]	
Urabe 2011	6	79	2	83	17.2%	3.33 [0.65, 17.01]	
Yamashita 2011	1	71	4	56	42.1%	0.19 [0.02, 1.71]	
Total (95%CI)		448		744	100.0%	2.19 [1.08, 4.47]	•
Total events	18		10				
Heterogeneity: $\chi^2 =$	8.90, df =	= 7 (<i>P</i> =	= 0.26); <i>I</i>	² = 219	6		0.01 0.1 1 10 100
Test for overall effect	t: Z = 2.1	.6 (<i>P</i> =	0.03)				Favours ESD Favours EMR

1-8%

0-6%

e-perf: resection risk factors

SCC by ESD in japan 156 neo in 147 pts perforation in 9 (6%)

- 6 closed by clips
- 2 drainage of pleural effusions
- surgery 0

size >75% circumf

OR =7.37; P = 0.016

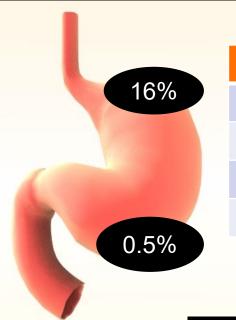
Early treatment periods

OR=4.04; P<0.01

low volume institutions

OR=3.03; P =0.045

Perforation at endoscopic resection of gastric neoplasms


EMR (Kojima T. GIE 1998)	0.5%
ESD (Minami S. GIE 2006)	5%

retrospective single center n. ESDs 1795

Perforation 3%

retrospective single center n. ESDs 823

Perforation 10%

	adj-OR	Р	OR	Р
Location: upper area	2.4	.006	7.1	.005
Ulcer / fibrosis	1.1	.86	2.6	.023
Tumor > 20 mm	1.9	.04	n.s.	
Optime >2 hrs	n.a.		4.0	.020

Ohta T, et al. GIE 2012 Yoo JH, et al. Surg Endosc 2012

ESD for trainees

Hirasawa K, et al. Dig Endosc 2012

	Non-	-ulcerative t	umor	Ulcerative tumor			
Tumor location Tumor size	Lower location	Middle location	Upper location	Lower location	Middle location	Upper location	
≤ 20 mm	4.7	7.0	11.7	11.4	16.4	25.7	
20 – 30mm	9.9	14.3	22.8	22.3	30.3	43.4	
> 30 mm	23.0	31.1	44.5	43.7 *	54.1 *	67.7 *	

Predicted non-curability rates

EMR difficulty SMSA levels

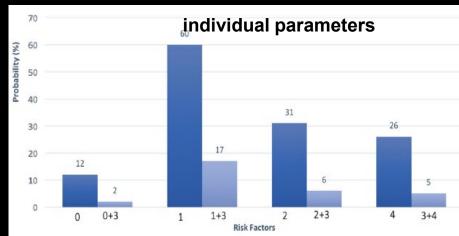
	SMSA 2+3 (score 6-12) %	SMSA 4 (score >12) %	р
complete initial resection	92* - 98	83* - 87	0.009
residual/recurrence at 1st FU	98	79	0.001
perforation & bleeding	0 - 4.5*	9 - 10*	0.007
post polypectomy syndrome	2.5	2.9	n.s.
cancer	11	9	n.s

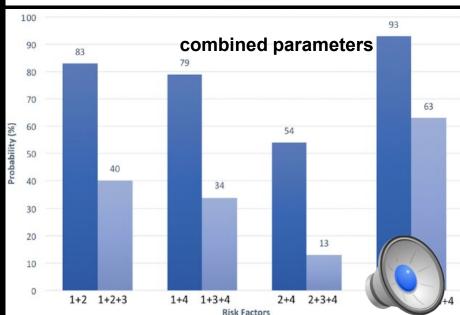
Longcroft-Wheaton G. DCR 2013 – *lesions: n. ; size >20 mm* * Sansone S. DLD 2017 – *lesions: n. ...; size*

RECOMMENDATION

ESGE recommends careful lesion assessment prior to EMR to identify features suggestive of poor outcome. Features associated with incomplete resection or recurrence include lesion size > 40 mm, ileocecal valve location, prior failed attempts at resection, and size, morphology, site, and access (SMSA) level 4. (Moderate quality evidence; strong recommendation.)

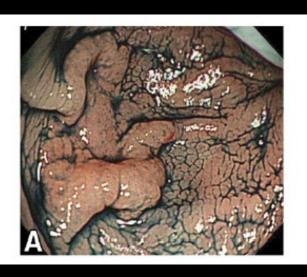
Ferlitsch M. ESGE Guidelines Endoscopy 2017

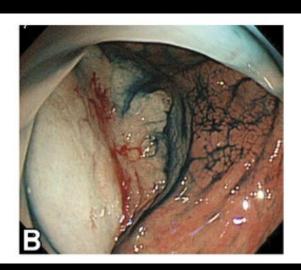

EMR difficulty / Incomplete R % "experience" impact


retrospective, 10 year period neoplasms: n. 269; size >10 mm

Expert definition:

- who receive tertiary referrals for difficult cases,
- >20 cases >10 mm within the study period

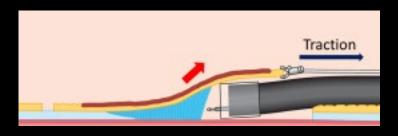

Parameters	OR (95% CI)
1. difficult lifting	11.0 (2.7-45.3)
2. size ≥40 mm	3.3 (1.4-7.9)
3. expert endoscopist	0.1 (0.04-0.42)
4. flat/LST morphology	2.6 (1.2-5.5)



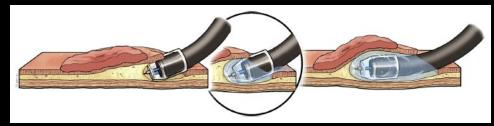
Tavakkoli A. DDS 2017

perforation is predictable

Colorectal endoscopic submucosal dissection: predictors and neoplasm-related gradients of difficulty Endosc Int Open 2017


Federico Iacopini¹, Yutaka Saito², Antonino Bella³, Takuji Gotoda⁴, Patrizia Rigato⁵, Walter Elisei¹, Fabrizio Montagnese¹, Giampaolo Iacopini⁶, Guido Costamagna⁷

Difficulty Assessment Chart probabilities of difficult colon ESD


Morphology	S	car negat	ive	Scar positive			
Experience	LST-G	Sessile	LST-NG	LST-G	Sessile	LST-NG	
≤90	<0.7	<2.3	<19.7*	<7.8	<22.8*	<47.0*	
91-120	<0.2	<0.6	<1.9	<2.3	<7.5	<19.6*	
>120	<0.1	<0.4	<1.3	<1.6	<5.3	<14.3	
*, variable with size							

traction-assisted ESD

dental floss & clip: esoph & stomach

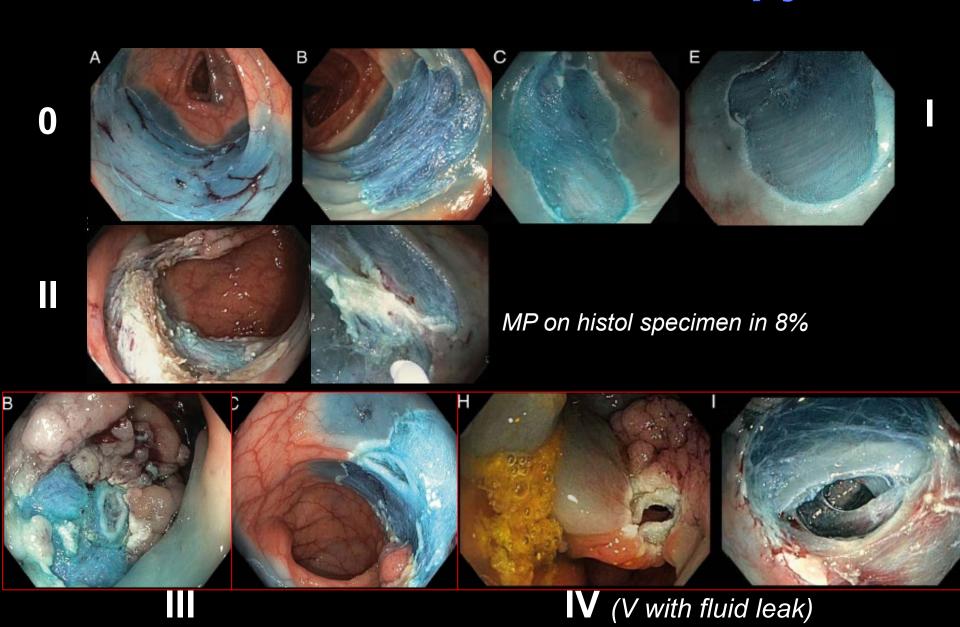
pocket creation method: colon

faster easier safer (also for trainees)

RCT

• gastric (310 pts/group): CONNECT-G study. Yoshida M. GIE 2018

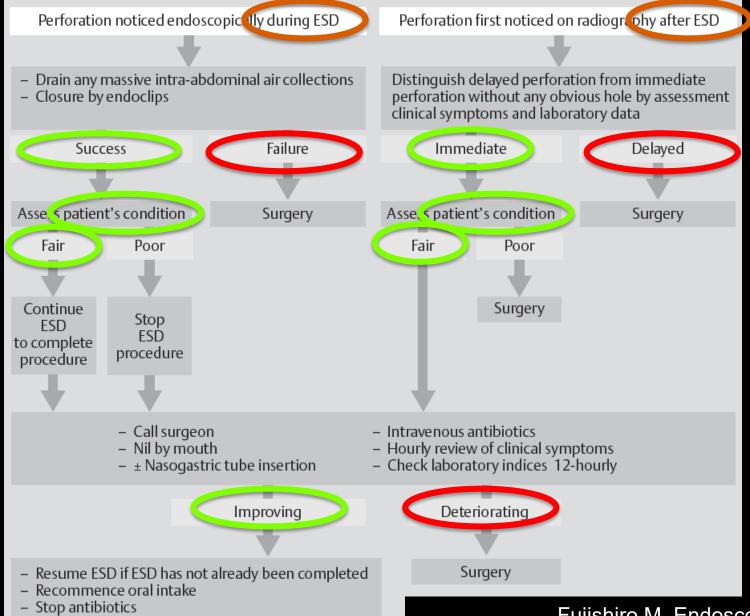
esoph (117 pts /group): CONNECT-E study. Yoshida M. GIE 2019


• colon (42 pts /group) Yamasaki Y. Dig Endosc 2018

colon (PCM) (45 pts/group): Harada H. GIE 2019

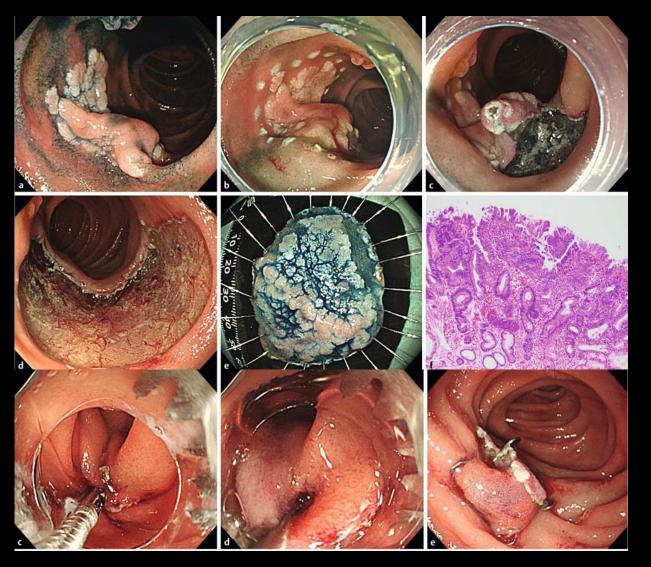
be prepared Recognize anatomic bowel wall structure

Resection Site chromoscopy


risk factors for deep muscular injury

	target III-IV-V adj OR
prox colon	1
transverse	3.55 (1.2-11.0)
distal	2.03 (0.8-5.5)
HGD / T1	3.0 (1.3-7.1)
en bloc if >25 mm	3.8 (1.5-9.8)

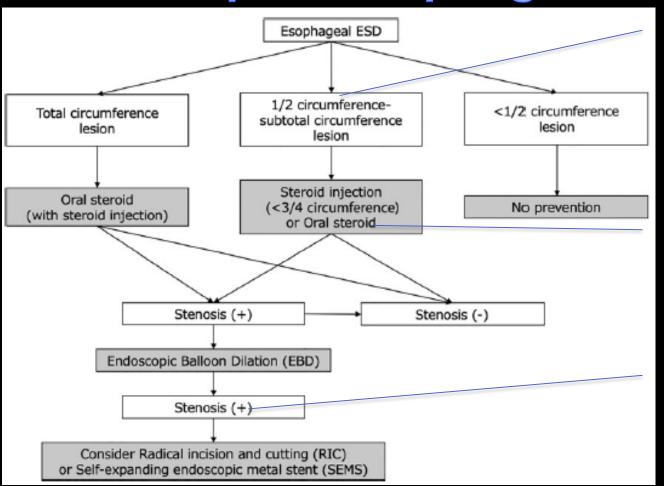
Perforation: procede up to completition


Fujishiro M. Endoscopy 2006

c-ESD Perforation multidisciplinary management

	Lee EJ. Surg Endosc 2013 Single center	Saito Y. Gut Liver 2013 Single center	lacopini F Fismad 2014 Single center
	Seoul, Korea	NCCH, Tokyo	Albano L, Roma
Endoscopist	Expert	Expert	Intermediate
n. ESD	1000	806	129
Incidence	53 (5%)	23 (3%)	7 (5%)
Intra/early			7 (100%)
Conservative ther by clip closure	50 (94%)	21 (91%)	4 (57%)
Surgery	3 (6%)	2 (9%)	3 (43%)

closure to prevent AEs

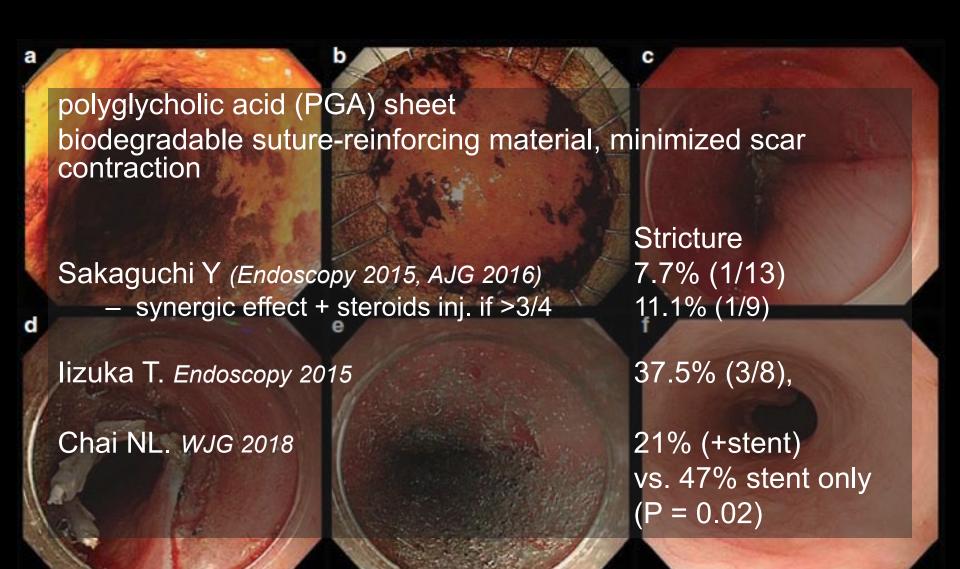

Tashima T. Endoscopy 2018

resection site closure AEs prevention

prospective
50 superficial nonampullary duodenal neoplasms
size 25 mm +/- 9 mm

R	Proceduse time, mean ± SD (range), minutes		67.3±58.8 (7-300)
	Closure time using OTSC, mean ± SD (range), m	inutes	9.8 ± 7.2 (3 – 30)
	Complete dosure rate, n (%)		47/50 (94.0%)
	Cases using a Twin Grasper, n (%)		11/50 (22.0)
	Number of OTSC deployments, mean ± SD (range)		1.4±0.5(1-3)
	Lesions requiring use of an endoloop snare, n (%)		3/50(6.0)
	Emergency surgery performed, n (%)		2/50 (4.0)
	Submucosal fibrosis, n (%)		12/50 (24.0)
	Intraoperative perforation, n (%)		4/50 (8.0)
	Intraoperative uncontrollable bleeding, n (%)		1/50 (2.0)
	Delayed perforation, n (%) ²	OTSC misplacement	1/48(2.1)
	Delayed bleeding, n (%) ²		3/48(6.3)
	Hospital stay after procedure, days, mean ± SD ((range)	5.5 ± 7.2 (3 – 52)

Strictures as complications post esophageal ESD



size risk <1/2 no 50mm; <2/3 33% >3/4 >90%

size risk
>3/4 from 90 to 60%
increased perforation
risk of EBD

Refractory stricture >3/4 - >5/6 additional oral steroids to reduce n. EBD

post resection e-stricture protective method

e-perforation dilation outcomes

after EMR/ESD

648 stricture dilations in 76 pts (78 neo) single center retrospective

- median 5 dilations over 3 months
- Initial dilation after 14 days
- Perforations in 7 (1%)

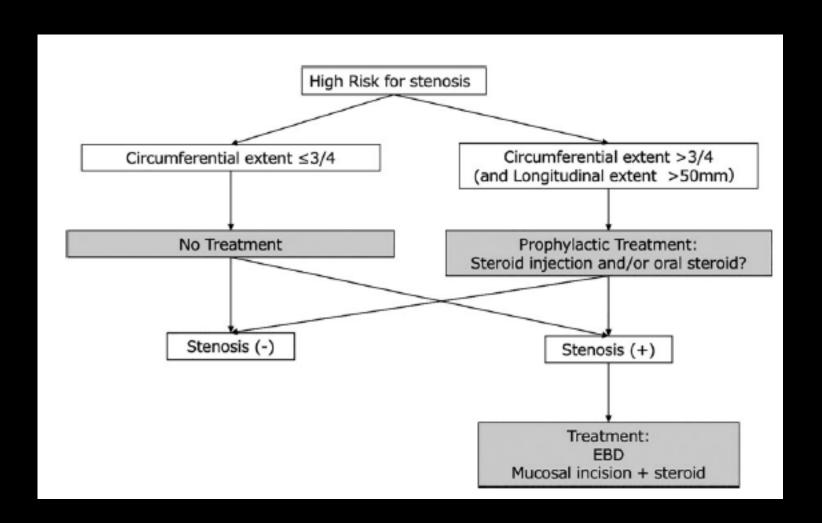
RISK FACTORS

- → multiple dilations (OR 1.2; P=0.012),
- ♦ lower third (OR 12.8; P=0.043).

Takahashi H. Endoscopy 2011

EoE

293 dilations in 161 pts


- deep mucosal tear in 10% (n. 30),
- conservative therapy in all

RISK FACTORS severe complications

- ◆ upper third OR, 5.62; (P < .001)
- ◆ middle third OR, 4.93 (P < .005)
 </p>
- stricture unable to be traversed (OR, 2.48 (P = .037),
- ◆ Savary dilator (OR, 2.63 (P = .018)

Jung KW. GIE 2011

post resection stricture g-ESD

post resection stricture cr-ESD

		Hayashi T. GIE 2017	Abe S GIE 2016
		822 pts, 912 lesions	363 pts, 370 lesions
site		CR	Rectum
size			80 mm (47-150)
stricture %		0.5% (4/912)	0.02% (1/370)
circumf defect	90%-<100%	11% (2/18)	-
	100%	50% (2/4)	-

Conclusions...

RISK MANAGEMENT

Randamental ISK MANAGEMENT IS the discipline of identifying, monitoring and limiting risk. Strategies include transferring the risk to another party, avoiding the risk, reducing the negative effect of the risk, and accepting some or all of the consequences of a particular risk. In order to manage risk, one has to identify the risk factors.

- 1. Procedure related (complexity of procedure).
- Patient related (comorbidity and clinical status).
- 3. Operator related (individual expertise).